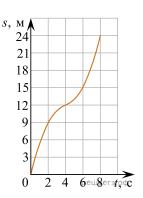
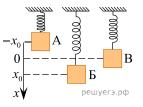
Централизованное тестирование по физике, 2015

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.

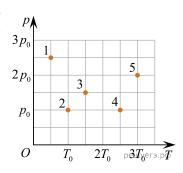
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

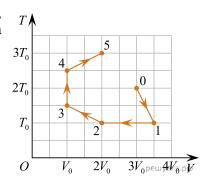

1. Установите соответствие между каждой физической величиной и её характеристикой. Правильное соответствие обозначено цифрой:

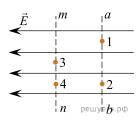
	А. Работа Б. Сила В. Путь		ная величина ная величина	
1) А1 Б1 В2	2) A1 Б2 B1	3) А2 Б1 В1	4) A2 Б1 B2	5) А2 Б2 В1


2. В момент времени $\Delta t = 0$ с звуковой сигнал был послан гидролокатором корабля вертикально вниз и, отразившись от дна моря, вернулся обратно в момент времени $t_2 = 2.9$ с. Если модуль скорости звука в воде $\upsilon = 1.5$ км/с ,то глубина H моря под кораблём равна:

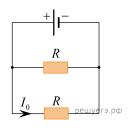
3. Подъемный кран движется равномерно в горизонтальном направлении со скоростью, модуль которой относительно поверхности Земли $\upsilon = 80$ см/с, и одновременно поднимает вертикально груз со скоростью, модуль которой относительно стрелы крана u = 60 см/с. Модуль перемещения Δr груза относительно поверхности Земли за промежуток времени $\Delta t = 0.6$ мин равен:


4. На рисунке приведен график зависимости пути s, пройденного телом при равноускоренном прямолинейном движении от времени t. Если от момента начала до отсчёта времени тело прошло путь s=24 м, то модуль перемещения Δr , за которое тело при этом совершило, равен:


5. На рисунке изображены три положения груза пружинного маятника, совершающего свободные незатухающие колебания с амплитудой x_0 . Если в положении B полная механическая энергия маятника W = 8,0 Дж, то в положении B она равна:


- **6.** В двух вертикальных сообщающихся сосудах находится ртуть ($\rho_1 = 13,6 \text{ г/см}^3$). Поверх ртути в один сосуд налили слой воды ($\rho_2 = 1,00 \text{ г/см}^3$) высотой H = 23 см. Разность Δh уровней ртути в сосудах равна:
 - 1) 16,9 mm
- 2) 20,5 мм
- 3) 23,8 мм
- 4) 29,6 mm
- 5) 32,3 mm
- 7. На p-T диаграмме изображены различные состояния идеального газа. Состояние с наименьшей концентрацией n_{\min} молекул газа обозначено цифрой:

- 1) 1 2) 2 3)3 4) 4 5) 5
- 8. Если при изотермическом расширении идеального газа, количество вещества которого постоянно, давление газа уменьшилось на $\Delta p = 80$ кПа, а объем газа увеличился в k = 5,00 раз, то давление p_2 газа в конечном состоянии равно:
 - 1) 20 κΠa
- 2) 30 κΠa
- 3) 40 κΠa
- 4) 50 κΠa
- 5) 60 κΠa
- **9.** На T V диаграмме изображён процесс $0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$, проведённый с одним молем газа. Газ не совершал работу (А = 0) на участке:



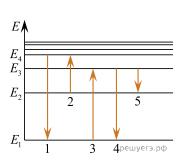
- 1) $0 \rightarrow 1$ 2) $1 \rightarrow 2$
- 3) $2 \rightarrow 3$
- 5) $4 \rightarrow 5$
- 10. Физической величиной, измеряемой в фарадах, является:
 - 1) сила Ампера
- 2) потенциал
- 3) электроёмкость
- 4) сила Лоренца
- 5) сила тока
- **11.** На рисунке изображены линии напряжённости $\dot{\mathrm{E}}$ и две эквипотенциальные поверхности ab и mn однородного электростатического поля. Для разности потенциалов между точками поля правильное соотношение обозначено цифрой:

- 1) $\phi_1 \phi_2 < \phi_1 \phi_3 < \phi_1 \phi_4$ 2) $\phi_1 \phi_2 = \phi_1 \phi_3 > \phi_1 \phi_4$ 3) $\phi_1 \phi_2 = \phi_1 \phi_3 < \phi_1 \phi_4$ 4) $\phi_1 \phi_2 > \phi_1 \phi_3 > \phi_1 \phi_4$ 5) $\phi_1 \phi_2 < \phi_1 \phi_3 = \phi_1 \phi_4$

12. Электрическая цепь, схема которой приведена на рисунке, состоит из источника постоянного тока и двух резисторов, сопротивления которых одинаковы и равны R (см. рис.). Если сила тока, протекающего через нижний на схеме резистор, равна I_0 , то сила тока I, протекающего через источник тока, равна:

1)
$$3I_0$$
 2) $2I_0$ 3) $\frac{3}{2}I_0$ 4) I_0 5) $\frac{1}{2}I_0$

13. Два тонких проводящих контура, силы тока в которых I_1 и I_2 , расположены в одной плоскости (см. рис.). Если в точке O (в центре обоих контуров) модули индукции магнитных полей, создаваемых каждым из токов, $B_1 = 10,0$ мТл и $B_2 = 6,0$ мТл, то модуль индукции B результирующего магнитного поля в точке O равен:

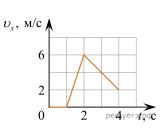

14. Если плоская поверхность площадью $S=0.04~{\rm M}^2$ расположена перпендикулярно линиям однородного магнитного поля, модуль индукции которого $B=0.20~{\rm Tr}$, то модуль магнитного потока Φ через эту поверхность равен:

15. Если в антенне радиоприёмника за промежуток времени $\Delta t = 1$ мс происходит $N = 1 \cdot 10^4$ колебаний электрического тока, то период T электромагнитной волны, вызывавшей эти колебания, равен:

1)
$$T=1\cdot 10^7$$
 MKC 2) $T=1\cdot 10^4$ MKC 3) $T=1\cdot 10^1$ MKC 4) $T=1\cdot 10^{-1}$ MKC 5) $T=1\cdot 10^{-4}$ MKC

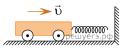
16. Если при нормальном падении монохроматического света на дифракционную решётку с периодом $d=3,12\,$ мкм третий дифракционный максимум наблюдается под углом $\theta=30^\circ$ к нормали, то длина световой волны λ равна:

17. На диаграмме показаны переходы атома водорода между различными энергетическими состояниями, сопровождающиеся либо излучением, либо поглощением фотонов. Поглощение фотона с наименьшим импульсом p_{\min} происходит при переходе, обозначенном цифрой:

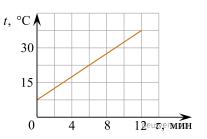


18. На рисунке изображены два зеркала, угол между плоскостями которых $\beta = 75^{\circ}$. Если угол падения светового луча AO на первое зеркало $\alpha = 55^{\circ}$, то угол отражения этого луча от второго зеркала равен: *Примечание*. Падающий луч лежит в плоскости рисунка.

1)
$$20^{\circ}$$
 2) 50° 3) 75° 4) 90° 5) 105°


19. Материальная точка массой m=3 кг движется вдоль оси Ox. График зависимости проекции скорости v_x материальной точки на эту ось от времени t представлен на рисунке. В момент времени t=3 с модуль результирующей всех сил F, приложенных к материальной точке, равен ... H.

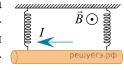
20. Тело движется вдоль оси Ox под действием силы \vec{F} . Кинематический закон движения тела имеет вид: $x(t) = A + Bt + Ct^2$, где A = 7.0 м, B = 4.0 м/с, C = 1.0 м/с². Если масса тела m = 4.0 кг, то в момент времен t = 3.0 с мгновенная мощность P силы равна ... **Вт**.


21. Трактор, коэффициент полезного действия которого $\eta=25$ %, при вспашке горизонтального участка поля равномерно двигался со скоростью, модуль которой $\upsilon=3,6$ км/ч. Если модуль силы тяги трактора F=20 кH, то за промежуток времени Δ t = 1,9 ч масса m израсходованного топлива (q=42 МДж/кг) равна ... кг.

22. К тележке массой m=0,40 кг прикреплена невесомая пружина жёсткостью k=810 Н/м . Тележка, двигаясь без трения по горизонтальной плоскости, сталкивается с вертикальной стеной (см. рис.). От момента соприкосновения пружины со стеной до момента остановки тележки пройдёт промежуток времени Δt , равный ... мс.

23. По трубе, площадь поперечного сечения которой S=5,0 см 2 , перекачивают идеальный газ ($M=44\cdot 10^{-3}$ кг/моль), находящийся под давлением p=392 кПа при температуре T=280 К. Если газ массой m=40 кг проходит через поперечное сечение трубы за промежуток $\Delta t=10$ мин, то средняя скорость $\langle \upsilon \rangle$ течения газа в трубе равна ... м/с.


24. На рисунке приведён график зависимости температуры t тела ($c=1000~\rm{Дж/(кг.°C)}$) от времени τ . Если к телу ежесекундно подводилось количество теплоты $Q_0=1,0~\rm{Дж}$, то масса m тела равна ... Γ .


25. Цилиндрический сосуд с идеальным одноатомным газом, закрытый невесомым легкоподвижным поршнем с площадью поперечного сечения $S=240~{\rm cm}^2$, находится в воздухе, давление которого $p_0=100~{\rm k\Pi a}$. Если при медленном нагревании газа поршень сместился на расстояние $l=70,0~{\rm mm}$, то газу сообщили количество теплоты Q, равное ... Дж.

26. Если период полураспада радиоактивного изотопа йода $^{131}_{53}I$ равен $T_{1/2}$ = 8 сут., то 75 % ядер этого изотопа распадётся за промежуток времени Δt , равный ... сут.

27. Электрическая цепь состоит из источника постоянного тока, конденсатора ёмкостью C=6,0 мкФ и двух резисторов, сопротивления которых $R_1=R_2=5,0$ Ом (см. рис.). Если внутреннее сопротивление источника r=2,0 Ом, а заряд конденсатора q=180 мкКл, то ЭДС источника тока ϵ равна ... **В**.

28. В однородном магнитном поле, модуль индукции которого $B=0,10~{\rm Tr}$, на двух одинаковых невесомых пружинах жёсткостью $k=50~{\rm H/m}$ подвешен в горизонтальном положении прямой однородный проводник длиной $L=1,5~{\rm m}$ (см. рис.). Линии магнитной индукции горизонтальны и перпендикулярны проводнику. Если при отсутствии тока в проводнике длина каждой пружины была $x_1=$

30 см, то после того, как по проводнику пошёл ток I = 20 А, длина каждой пружины x_2 в равновесном положении стала равной ... см.

- **29.** Электрический нагреватель подключен к электрической сети, напряжение в которой изменяется по гармоническому закону. Амплитудное значение напряжения в сети $U_0 = 151$ В. Если действующее значение силы тока в цепи $I_{\pi} = 0.33$ А, то нагреватель потребляет мощность P, равную ... **Вт**.
- **30.** Две вертикальные однородно заряженные непроводящие пластины расположены в вакууме на расстоянии d=80 мм друг от друга. Между пластинами на длинной лёгкой нерастяжимой нити подвешен небольшой заряженный ($|q_0|=500$ пКл) шарик массой m=380 мг, который движется, поочерёдно ударяясь о пластины. При ударе о каждую из пластин шарик теряет $\eta=19,0$ % своей кинетической энергии. В момент каждого удара шарик перезаряжают, и знак его заряда изменяется на противоположный. Если модуль напряжённости однородного электростатического поля между пластинами E=250 кВ/м, то период T ударов шарика об одну из пластин равен ... мс.